
C O M P U T E | S T O R E | A N A L Y Z E

2/12/19
1

Using Cray Systems with Knights Landing processors

Kevin Thomas
Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

Outline

2/12/19 Cray Inc.
2

●Part 1
● Background
● Node Comparison
● How to use

●Part 2
● Strategies
● Best Known Methods
● Resources

C O M P U T E | S T O R E | A N A L Y Z E

KNL Processor Architecture

2/12/19 Cray Inc.
3

C O M P U T E | S T O R E | A N A L Y Z E

KNL Tile Architecture

2/12/19 Cray Inc.
4

C O M P U T E | S T O R E | A N A L Y Z E

KNL Tile Frequencies and Turbo Mode

2/12/19 Cray Inc.
5

●Two turbo tile frequencies implemented
● “All tiles active” turbo, +100 MHz
● “Single tile active” turbo, +200 MHz

●Two below-base frequencies
● Heavy AVX instructions, -200 MHz
● Under some conditions -100 MHz also possible

●Xeon Phi 7250 tile frequencies
● 1.6 GHz single tile turbo
● 1.5 GHz all tiles turbo
● 1.4 GHz base frequency
● 1.3 GHz
● 1.2 GHz AVX

C O M P U T E | S T O R E | A N A L Y Z E

Xeon Phi “Knights Landing” Compatibility

2/12/19 Cray Inc.
6

● Runs existing Xeon x86 64-bit executables
● Linux commands
● ISV applications
● Applications built for Xeon processors

● Existing Xeon-targeted libraries will work
● If library is not a critical compute component, recompiling not needed
● Intel 16 MKL has AVX-512 support enabled at run time

● Xeon executables can take advantage of all KNL features
● Except AVX-512 (requires recompiling)
● Except moving selected data to MCDRAM (requires source changes)
● Optimal instruction selection and organization is different

● Recompiling will probably improve performance
● HPGMG-FV - High-Performance Geometric Multi-Grid benchmark
● Run on 64 KNL nodes, 64 cores per node, quad/cache
● CCE 8.5, craype-sandybridge: 1.264 billion DOF/s
● CCE 8.5, craype-haswell: 1.447 billion DOF/s
● CCE 8.5, craype-mic-knl: 1.866 billion DOF/s

C O M P U T E | S T O R E | A N A L Y Z E

Acronym and Terminology Reference

2/12/19 Cray Inc.
7

● DDR - Double Data Rate
● Refers to the 6 channels of DDR4-2400 DIMM main memory

● MCDRAM - Multi-Channel DRAM
● High-bandwidth on-package memory

● MCDRAM Cache
● MCDRAM configured as a last-level memory-side cache

● Flat MCDRAM
● MCDRAM configured as addressable memory
● User-visible as a NUMA node with memory but no cpus

● EDC - Embedded DRAM Controller
● Interface to MCDRAM, 8 controllers per processor

● Tile - A logic block including two cores sharing an L2 cache
● Includes an on-chip mesh interface and CHA

● CHA - Caching Home Agent
● Per-tile block which manages cache coherence (L2 and MCDRAM)

● MC or IMC - Integrated (DDR) Memory Controller
● OPIO - On-Package I/O

● Interface from KNL processor to MCDRAM
● HBM - High Bandwidth Memory

● HBM is a memory hardware technology developed by AMD and partners
● Sometimes used informally to refer to flat MCDRAM on KNL

● VPU - Vector Processing Unit
● AVX-512 SIMD execution unit, 2 per core

● SNC - Sub-NUMA Cluster
● Processor mode which divides memory capacity and bandwidth into 2 or 4 NUMA nodes per memory type
● Also divides the cores and MCDRAM cache among the DDR NUMA nodes

C O M P U T E | S T O R E | A N A L Y Z E

Core to Core: Comparing Xeon Phi to Xeon

2/12/19 Cray Inc.
8

Feature Haswell Knights
Landing

How KNL compares

Number of cores 16 68 A lot more cores (4X)
Core frequency 2.3 to 3.6 GHz 1.4 to 1.6 Lower frequency (2X)
Serial scalar rate Lorenz=3048 874 3.5X slower
L1 cache size 32KB 32KB Same
L1 load bandwidth 2X 32 bytes 2X 64 bytes Higher per cycle (2X)
L1 load rate 7 billion/sec 3 billion/sec Same per cycle, but lower clock
L2 cache size 256KB 1MB/2 cores Much larger (2X per core)
L2 bandwidth 64 bytes/cyc 64 bytes/cyc Same per cycle, but lower clock
L3 cache size 2.5 MB/core N/A Many kernels bandwidth limited

C O M P U T E | S T O R E | A N A L Y Z E

Node to Node: Comparing Xeon Phi to Xeon

2/12/19 Cray Inc.
9

Feature Haswell Knights Landing How KNL compares
Number of cores 32 68 More cores (2X)
DDR 8 channels 6 channels 25% less bandwidth, capacity
MCDRAM N/A 8 channels, 16 GB Unique feature
Memory Bandwidth ~120 GB/s 490 GB/s MCDRAM rate (4X)
FP Peak (vector) ~1.2 TF/s ~2.6 TF/s Higher peak (2X)
FP Peak (scalar) 294 GF/s 326 GF/s Slightly higher
Instruction Peak 387 Ginst/s 190 Ginst/s Half peak rate
Package Power 270 W 215 W Less power

C O M P U T E | S T O R E | A N A L Y Z E

KNL Memory Modes

2/12/19 Cray Inc.
10

● Also known as MCDRAM configuration
● Memory Mode describes how MCDRAM is used

● As memory-side cache, as addressable memory, or some of both
● Cache Mode

● All MCDRAM configured as direct-mapped cache
● Flat Mode

● All MCDRAM configured as addressable memory
● Only mode latency-optimized for DDR
● Cores are associated with DDR NUMA node

● Hybrid Mode
● MCDRAM split between addressable and cache
● Allowed ratios are: 75%:25% or 50%:50% (aka split and equal)

● Configured at node boot time

C O M P U T E | S T O R E | A N A L Y Z E

KNL Memory Modes

2/12/19 Cray Inc.
11

Cache

MCDRAM is NUMA node 1

DDR is NUMA node 0

HybridFlat

MCDRAM acts as memory-
side cache for DDR

DDR is NUMA node 0

Part of MCDRAM is cache,
part is NUMA node 1

DDR is NUMA node 0

C O M P U T E | S T O R E | A N A L Y Z E

KNL Cluster Modes

2/12/19 Cray Inc.
12

● Also known as NUMA configuration
● Cluster Mode sets cache coherency configuration

● Each tile has a caching home agent (CHA)
● Quadrant Mode

● CHAs divided into 4 groups with locality to memory controllers
● Each page of memory striped over all CHAs
● Also Hemisphere mode to divide tiles into halves
● And AlltoAll mode, with no locality between CHAs and memory

● Sub-NUMA Clustering (SNC) mode
● SNC2, Memory and tiles are divided into NUMA domains

● 2 NUMA nodes for each addressable memory type (DDR4, MCDRAM)
● Tiles (cores) divided between the DDR domains
● MCDRAM cache also partitioned

● Also SNC4 mode to divide memory into quarters
● Configured at node boot time

C O M P U T E | S T O R E | A N A L Y Z E

In Quadrant mode, all tiles are in NUMA node 0

2/12/19 Cray Inc.
13

C O M P U T E | S T O R E | A N A L Y Z E

With SNC2, tiles are split between NUMA nodes

2/12/19 Cray Inc.
14

C O M P U T E | S T O R E | A N A L Y Z E

NUMA and MCDRAM Configuration

2/12/19 Cray Inc.
15

● Node configuration selected by user
● If no configuration specified, any node is allocated
● Managed by the workload manager

● If enabled, WLM can initiate node reconfiguration
● Some or all of the nodes reserved for the job may be rebooted
● About 20 minutes delay before job starts execution

● NUMA configuration
● {a2a, hemi, quad, snc2, snc4}

● MCDRAM configuration
● {cache, equal, split, flat}
● equal is 50% cache, split is 25% cache

C O M P U T E | S T O R E | A N A L Y Z E

SLURM Node Configuration

2/12/19 Cray Inc.
16

● Selected by --constraint option (or -C)
● On sbatch, salloc, or srun
● --constraint={numa},{mcdram}

● Normally specified together, but not required
● --constraint=quad,cache

● Other syntax is also allowed
● See --constraint in the sbatch man page

● sinfo with active features output shows configurations

● alloc# means “allocated but rebooting”
● Job time limit does not begin until nodes are rebooted

$ sinfo -o "%D %t %b"
NODES STATE ACTIVE_FEATURES
4 alloc# quad,flat
152 idle cache,quad

C O M P U T E | S T O R E | A N A L Y Z E

SLURM CPU Affinity (1)

2/12/19 Cray Inc.
17

● Default CPU affinity depends upon run options
● “auto binding”
● Depends upon --ntasks-per-node and --cpus-per-task
● Enabled if ntasks-per-node * cpus-per-task equals

● number of sockets
● number of cores
● number of threads

● Otherwise, no cpu affinity is set
● --cpu_bind can be used to set cpu affinity

● Recommended for Cori
● --cpu_bind=cores (task affinity to hardware cores)
● --cpu_bind=threads (task affinity to hardware threads)
● For KNL, 4 hardware threads per core

C O M P U T E | S T O R E | A N A L Y Z E

SLURM CPU Affinity (2)

2/12/19 Cray Inc.
18

● SLURM does not provide CPU affinity for software threads
● SLURM sets a cpu mask for each process (MPI rank)
● By default, threads can float among the cpus in the mask
● This is similar to “aprun -d XX -cc depth”

● Use OMP_PROC_BIND and OMP_PLACES
● OMP_PROC_BIND={true,close,spread}
● OMP_PLACES={cores,threads}
● OMP_PLACES=cores for behavior like “aprun -j 1 -cc cpu”
● OMP_PLACES=threads for “aprun -j {2,3,4} -cc cpu”

● For OMP_NUM_THREADS > 4 and --hint=multithread
● Use --cpus-per-task to get all threads of cores needed

● e.g., use --cpus-per-task=8 and OMP_NUM_THREADS=4
for 2 cores, 2 threads per core

● Set OMP_PROC_BIND=true

C O M P U T E | S T O R E | A N A L Y Z E

Compilers

2/12/19 Cray Inc.
19

● With Cray PE: module load craype-mic-knl
● Targets KNL instruction set
● AVX-512
● Will only run on KNL nodes

● Without craype-mic-knl, use compiler flags for KNL
● Intel: -xMIC-AVX512
● CCE: -h cpu=mic-knl
● GCC: -march=knl

● Intel 16 has KNL support
● Intel 17 has additional KNL enhancements
● CCE 8.5 has initial KNL support
● CCE 8.6 has enhancements
● -march=knl was introduced with GCC 5.1

C O M P U T E | S T O R E | A N A L Y Z E

Vectorize for best performance

2/12/19 Cray Inc.
20

● Take advantage of AVX-512
● 8 results per instruction versus 1 result per instruction

● Helps compensate for low core frequency
● More work each cycle with vectorized code

● Helps compensate for low instruction dispatch width
● 2 instructions/cycle

● Vectorization techniques the same as Xeon
● Use CCE loopmark listing or compiler messages

● -rm (Fortran) or -h list=m (C)
● -h msgs

● Use Intel compiler reporting
● -qopt-report
● -qopt-report-phase=vec

● Vectorization helps if data is accessible
● Contiguous memory access (stride-1)
● Cache block for L2

C O M P U T E | S T O R E | A N A L Y Z E

Strategies For Using High-Bandwidth MCDRAM

2/12/19 Cray Inc.
21

● If 16 GB is big enough
● Configure as flat, use default MCDRAM
● numactl --membind=1

● If data touched within key loops is known, < 16 GB
● Configure flat, use default DDR and memkind for MCDRAM
● hbw_malloc / hbw_free
● For Intel: !DIR$ ATTRIBUTES FASTMEM
● For CCE: !DIR$ MEMORY(BANDWIDTH)
● Or try numactl --preferred=1

● Otherwise
● Configure as cache
● Can do both and configure as equal or split
● With equal and split, memory bandwidth is reduced

C O M P U T E | S T O R E | A N A L Y Z E

Using numactl to use MCDRAM

2/12/19 Cray Inc.
22

● To get all memory allocated in MCDRAM, use numactl
● Configure MCDRAM as flat
● MCDRAM will be NUMA node 1
● Per-node memory limit is 16 GB (MCDRAM size)
● Run using numactl

srun -n 320 --ntasks-per-node=64 numactl --membind=1 a.out

● To use MCDRAM first, but overflow into DDR
● Configure flat as above
● Use --preferred=1 instead of --membind=1
● Per node memory limit includes all memory (MCDRAM+DDR)
● Often does not help much

● Only first allocations will be to MCDRAM
● Later allocations will overflow into DDR

C O M P U T E | S T O R E | A N A L Y Z E

Memory Allocation Examples

float *fv;
fv = (float *)malloc(sizeof(float) * 1000);

Allocate from DDR

float *fv;
fv = (float *)hbw_malloc(sizeof(float) * 1000);

Allocate from MCDRAM

c Declare arrays to be dynamic
REAL, ALLOCATABLE :: A(:), B(:), C(:)

!DIR$ ATTRIBUTES FASTMEM :: A
NSIZE=1024

c
c allocate array ‘A’ from MCDRAM
c

ALLOCATE (A(NSIZE))
c
c Allocate arrays that will come from DDR
c

ALLOCATE (B(NSIZE), C(NSIZE))

Allocate arrays from MCDRAM & DDR in Intel Fortran

Cray Inc.
23

C O M P U T E | S T O R E | A N A L Y Z E

CCE Memory Allocation Examples

#pragma memory(bandwidth)
float *fv = (float *)malloc(sizeof(float) * 1000);

Allocate from MCDRAM in CCE C

c Declare arrays to be dynamic
REAL, ALLOCATABLE :: A(:), B(:), C(:)
NSIZE=1024

c
c allocate array ‘A’ from MCDRAM
c
!DIR$ MEMORY(BANDWIDTH)

ALLOCATE (A(NSIZE))
c
c Allocate arrays that will come from DDR
c

ALLOCATE (B(NSIZE), C(NSIZE))

Allocate arrays from MCDRAM & DDR in CCE Fortran

Cray Inc.
24

#pragma memory(bandwidth)
float *fv = new float[1000];

Allocate from MCDRAM in CCE C++

C O M P U T E | S T O R E | A N A L Y Z E

MCDRAM as Cache - Cache Conflicts

2/12/19 Cray Inc.
25

● Direct mapped cache, DDR is 6 times larger
● 6 DDR pages map to the same locations in MCDRAM cache

● Two physical pages which conflict will cause
thrashing
● Performance impact depends upon how often this occurs

● Conflicts cause cache misses, lower performance
● Performance limited by DDR, not MCDRAM cache bandwidth

● Most often seen when using a large number of nodes
● Chance of any node having a conflict increases
● Physical pages assigned independently on each node
● A page sorting feature in the OS reduces randomness

C O M P U T E | S T O R E | A N A L Y Z E

Alternative MCDRAM Strategies - Reverse NUMA Binding

2/12/19 Cray Inc.
26

● Makes MCDRAM default, but places selected arrays in DDR
● Works when a few large arrays are not part of the main compute

● Add hbwmalloc calls or directives on data to be placed into DDR
● Configure MCDRAM as flat
● export MEMKIND_HBW_NODES=0
● Launch program using “numactl --membind=1”
● Can be combined with the autohbw strategy as “reverse autohbw”

C O M P U T E | S T O R E | A N A L Y Z E

Alternative MCDRAM Strategies (2) - Autohbw

2/12/19 Cray Inc.
27

● Place allocations into MCDRAM without source changes
● Selected by allocation size
export AUTO_HBW_SIZE=min_size[:max_size]
● Run the program with MCDRAM configured as flat
● Can be combined with reverse NUMA binding

● Cori: module load autohbm
● On other systems, build memkind from source

https://github.com/memkind/memkind
● Link with autohbw:
-L $MEMKIND_DIR/memkind/lib -Wl,--whole-archive -lautohbw -Wl,--no-whole-archive

● For prelinked dynamic executables, use LD_PRELOAD
export LD_PRELOAD=$MEMKIND_DIR/lib/libautohbw.so

https://github.com/memkind/memkind/blob/dev/autohbw/autohbw_README

C O M P U T E | S T O R E | A N A L Y Z E

With CCE OpenMP, try wait policy passive

2/12/19 Cray Inc.
28

● Many programs run faster with OpenMP and 2-way HT
● export OMP_NUM_THREADS=2
● srun --ntasks-per-node=64 -c 4 --cpu-bind=cores

● With active wait policy, worker threads spin-wait when idle
● Spin-waiting consumes instruction issue bandwidth

● With passive wait policy, worker threads halt when idle
(after a short spin-wait)
● CCE default wait policy is active when ncores=nthreads
● CCE default wait policy is passive when ncores<nthreads
● Intel default wait policy is passive

● To reduce issue bottleneck, set passive wait policy
● export OMP_WAIT_POLICY=passive
● May also increase OpenMP parallel overhead due to thread wakeup

time when executing many small parallel regions

C O M P U T E | S T O R E | A N A L Y Z E

SLURM CPU affinity recipes for OpenMP

2/12/19 Cray Inc.
29

● export OMP_NUM_THREADS=xx
● export OMP_PROC_BIND=true
● export OMP_PLACES=threads

● srun -n yyy -c xx --threads-per-core=1 a.out
● For one thread per core, xx OpenMP threads per process

● Same environment settings can be used on ALPS systems
● Useful when “aprun -cc depth” is used.

C O M P U T E | S T O R E | A N A L Y Z E

Use Core Specialization

2/12/19 Cray Inc.
30

● MPI synchronization time can rise due to OS noise
● Sync time is time until the last process enters the collective
● Usually when a large number of nodes is used

● May show up as large times for collectives
● MPI_Allreduce

● To reduce OS noise by 50%, use core specialization
● Impact on collective calls even larger than 50%

● Core specialization reserves hardware to handle OS work
● Highest numbered available cpu is selected first

● SLURM: srun --thread-spec=1
● Can also set SLURM_THREAD_SPEC=1

C O M P U T E | S T O R E | A N A L Y Z E

For best performance, avoid dynamic linking

2/12/19 Cray Inc.
31

● Dynamically linked executables usually run slower
● More overhead for library calls
● Not all libraries are performance-critical

● Dynamic linking penalty mainly impacts
● Calls of short duration
● Which occur frequently

● Use of memkind requires dynamic linking
● Work-around is to build a local static memkind library

● Consider static linking for these types of libraries
● Compiler runtime (intrinsics, pattern-matched code)
● Math libraries
● OpenMP runtime
● Memory allocation (if occurs frequently)
● MPI (if many small messages or if latency is important)

C O M P U T E | S T O R E | A N A L Y Z E

KNL Features and Usage Summary

2/12/19 Cray Inc.
32

●More cores - 68 per processor
●Wider SIMD instructions - AVX-512
●4 hardware threads per core
●L2 cache is shared between two cores
●Can execute Xeon programs
●High-bandwidth memory - MCDRAM
●MCDRAM is often used as a 16GB cache

C O M P U T E | S T O R E | A N A L Y Z E

Using Cray Systems with Knights Landing
processors

2/12/19
33

Questions?

C O M P U T E | S T O R E | A N A L Y Z E

Bonus Slide - Additional Resources

2/12/19 Cray Inc.
34

Using Cori - from the November 2016 NESAP Hackathon
https://www.nersc.gov/assets/Uploads/Using-Cori-20161129-NESAP-HACKATHON.pdf

Cori Intel Xeon Phi Nodes
http://www.nersc.gov/users/computational-systems/cori/cori-intel-xeon-phi-nodes/

Example batch scripts for Cori KNL Nodes
https://www.nersc.gov/users/computational-systems/cori/running-jobs/example-batch-scripts-for-knl/

PRACE Best Practice Guide – Knights Landing, January 2017
http://www.prace-ri.eu/best-practice-guide-knights-landing-january-2017/

Explicit Vector Programming – Best Known Methods
https://software.intel.com/en-us/articles/explicit-vector-programming-best-known-methods

https://www.nersc.gov/assets/Uploads/Using-Cori-20161129-NESAP-HACKATHON.pdf
http://www.nersc.gov/users/computational-systems/cori/cori-intel-xeon-phi-nodes/
https://www.nersc.gov/users/computational-systems/cori/running-jobs/example-batch-scripts-for-knl/
http://www.prace-ri.eu/best-practice-guide-knights-landing-january-2017/
https://software.intel.com/en-us/articles/explicit-vector-programming-best-known-methods

C O M P U T E | S T O R E | A N A L Y Z E

Bonus Slide - Core Block Diagram

2/12/19 Cray Inc.
35

C O M P U T E | S T O R E | A N A L Y Z E

Bonus Slide - Instruction Set Architecture

2/12/19 Cray Inc.
36

C O M P U T E | S T O R E | A N A L Y Z E

Bonus Slide - AVX-512 Extensions

2/12/19 Cray Inc.
37

C O M P U T E | S T O R E | A N A L Y Z E

Bonus Slide - AVX-512 Extensions

2/12/19 Cray Inc.
38

